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Abstract: - This work presents a numerical tool implemented to simulate inviscid and viscous flows employing 

the reactive gas formulation of thermal equilibrium and chemical non-equilibrium. The Euler and Navier-

Stokes equations, employing a finite volume formulation, on the context of structured and unstructured spatial 

discretizations, are solved. The aerospace problem involving the hypersonic flow around a blunt body, in two-

dimensions, is simulated. The reactive simulations will involve an air chemical model of five species: N, N2, 

NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination, will be simulated by 

the proposed model. The algorithm employed to solve the reactive equations was the Van Leer, first- and 

second-order accurate ones. The second-order numerical scheme is obtained by a “MUSCL” (Monotone 

Upstream-centered Schemes for Conservation Laws) extrapolation process in the structured case. The 

algorithm is accelerated to the steady state solution using a spatially variable time step procedure, which has 

demonstrated effective gains in terms of convergence rate, as reported in Maciel. The results have demonstrated 

that the most correct aerodynamic coefficient of lift is obtained by the Van Leer first-order accurate scheme in 

the inviscid, structured, blunt body simulation. Moreover, the shock position is closer to the geometry as using 

the reactive formulation than the ideal gas formulation. It was verified in the inviscid and viscous cases. 

 

Key-Words: - Euler and Navier-Stokes equations, Chemical non-equilibrium, Five species model, 

Hypersonic flow, Van Leer algorithm. 
 

1 Introduction 
In several aerodynamic applications, the 

atmospheric air, even being composed of several 

chemical species, can be considered as a perfect 

thermal and caloric gas due to its inert property as 

well its uniform composition in space and constancy 

in time. However, there are several practical 

situations involving chemical reactions, as for 

example: combustion processes, flows around 

aerospace vehicles in reentry conditions or plasma 

flows, which do not permit the ideal gas hypothesis 

([1]). As described in [2], since these chemical 

reactions are very fast such that all processes can be 

considered in equilibrium, the conservation laws 

which govern the fluid become essentially 

unaltered, except that one equation to the general 

state of equilibrium has to be used opposed to the 

ideal gas law. When the flow is not in chemical 

equilibrium, one mass conservation law has to be 

written to each chemical species and the size of the 

equation system increases drastically. 

 Hypersonic flows are primary characterized by a 

very high level of energy ([3]). Through the shock 

wave, the kinetic energy is transformed in enthalpy. 

The flow temperature between the shock wave and 

the body is very high. Under such conditions, the air 

properties are considerably modified. Phenomena 

like vibrational excitation and molecular 

dissociation of O2 and N2 frequently occur. The 

energy is stored under a form of free energy and the 

flow temperature is extremely reduced as compared 

with the temperature of an ideal gas flow. The 

thermodynamic and transport coefficients are not 

more constants. In summary, the ideal gas 

hypothesis is not truer and such flow is called the 

hypersonic flow of reactive gas or “hot gas flow”. 

 During the reentry and the hypersonic flights of 

aerospace vehicles in the atmosphere, reactive gas 

effects are present. The analysis of such hypersonic 

flows is critical to an appropriated aerodynamic and 

thermal project of such vehicles. The numerical 

simulation of reactive-gas-hypersonic flows is a 

very complex and disputed task. The present work 

emphasizes the numerical simulation of hypersonic 

flow in thermal equilibrium and chemical non-

equilibrium. 

 This work, the first part of this study, presents a 

numerical tool implemented to simulate inviscid and 

viscous flows employing the reactive gas 

formulation of thermal equilibrium and chemical 

non-equilibrium flow in two-dimensions. The Euler 

and Navier-Stokes equations, employing a finite 

volume formulation, on the context of structured 
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and unstructured spatial discretizations, are solved. 

These variants allow an effective comparison 

between the two types of spatial discretization 

aiming verify their potentialities: solution quality, 

convergence speed, computational cost, etc. The 

aerospace problem involving the “hot gas” 

hypersonic flow around a blunt body, in two-

dimensions, is simulated. The algorithm is 

accelerated to the steady state solution using a 

spatially variable time step procedure, which has 

demonstrated effective gains in terms of 

convergence rate, as shown in [4-5]. 

 In this work, first part of this study, the 

structured formulation of the two-dimensional Euler 

and Navier-Stokes reactive equations is presented. 

In a next paper, the second part of this study, it will 

be presented the unstructured version of the 

calculation algorithm in two-dimensions to 

complete the formulation in structured and in 

unstructured contexts. However, solutions to the 

structured and unstructured cases are presented in 

both papers. 

 The reactive simulations will involve an air 

chemical model of five species: N, N2, NO, O and 

O2. Seventeen chemical reactions, involving 

dissociation and recombination, will be simulated 

by the proposed model. The Arrhenius formula will 

be employed to determine the reaction rates and the 

law of mass action will be used to determine the 

source terms of each gas species equation. 

 The algorithm employed to solve the reactive 

equations was the [6], first- and second-order 

accurate ones. The second-order numerical scheme 

is obtained by a MUSCL extrapolation process in 

the structured case (details in [7]). In the 

unstructured case, tests with the linear 

reconstruction process (details in [8]) did not yield 

converged results and, therefore, were not 

presented. The algorithm was implemented in a 

FORTRAN programming language, using the 

software Microsoft Developer Studio. Simulations 

in three microcomputers (one desktop and two 

notebooks) were accomplished: one with processor 

Intel Celeron of 1.5 GHz of clock and 1.0 GBytes of 

RAM (notebook), one with processor AMD-

Sempron of 1.87 GHz of clock and 512 MBytes of 

RAM (desktop) and the third one with processor 

Intel Celeron of 2.13 GHz of clock and 1.0 GBytes 

of RAM (notebook). 

The results have demonstrated that the most 

correct aerodynamic coefficient of lift is obtained by 

the [6] first-order accurate scheme in the inviscid, 

structured, blunt body simulation. The cheapest 

algorithm was the unstructured [6] scheme, first-

order accurate in space, to an inviscid simulation. 

Moreover, the shock position is closer to the 

geometry as using the reactive formulation than the 

ideal gas formulation. It was verified in the inviscid 

and viscous cases. 

As the consequence of such study, a three-

dimensional work, [23], following this one has been 

performed. [23] work has presented a numerical tool 

implemented to simulate inviscid and viscous flows 

employing the reactive gas formulation of thermal 

equilibrium and chemical non-equilibrium in three-

dimensions. The aerospace problem involving the 

hypersonic flow around a blunt body, in three-

dimensions, was simulated. The present paper is 

similar to [23], but is different in terms of spatial 

solution. The former shows two-dimensional 

solutions of the flow around a blunt body, whereas 

the latter shows three-dimensional solutions of the 

flow around a blunt body configuration. Both works 

are applied to solve the Euler and Navier-Stokes 

equations, in each spatial system, and both works 

solved a five (5) species chemical model, involving 

seventeen (17) chemical reactions, using the 

Arrhenius formula and the law of mass action to 

solve the chemical part. Although they seems very 

similar, both works were applied to different spatial 

dimensions, where in the three-dimensional case, 

due to the third dimension, a closer shock wave is 

captured than its two-dimensional counterpart. So, 

the third dimension shows a significant influence in 

the solution quality, differing from the present work. 

 

 

2 Formulation to Reactive Flow in 

Thermal Equilibrium and Chemical 

Non-Equilibrium 
 

2.1 Reactive equations in two-dimensions 
The Navier-Stokes equations in thermal equilibrium 

and chemical non-equilibrium were implemented on 

a finite volume context, in the two-dimensional 

space.  In this space, such equations in integral and 

conservative forms can be expressed by: 

  




V V

C

S

dVSdSnFQdV
t


, with: 

                 jFFiEEF veve


 ,             (1) 

where: Q is the vector of conserved variables, V is 

the computational cell volume, F


 is the complete 

flux vector, n


 is the normal unity vector to the flux 

face, S is the flux area, SC is the chemical source 
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term, Ee and Fe are the convective flux vectors or the 

Euler flux vectors in the x and y directions, 

respectively, and Ev and Fv are the viscous flux 

vectors in the x and y directions, respectively. The 

i


 and j


 unity vectors define the Cartesian 

coordinate system. Eight (8) conservation equations 

are solved: one of general mass conservation, two of 

linear momentum conservation, one of total energy 

and four of species mass conservation. Therefore, 

one of the species is absent of the iterative process. 

The CFD (Computational Fluid Dynamics) 

literature recommends that the species to be omitted 

of the formulation should be that of biggest mass 

fraction of the gaseous mixture, aiming to result in 

the minimum accumulated numerical error, 

corresponding to the major constituent of the 

mixture (in the case, air). To the present study, in 

which is chosen an air chemical model composed of 

five (5) chemical species (N, N2, NO, O and O2) and 

seventeen (17) chemical reactions, being fifteen (15) 

dissociation reactions (endothermic reactions), this 

species can be the N2 or the O2. To this work, the O2 

was the chosen species. The Q, Ee, Fe, Ev, Fv and SC 

vectors can, hence, be defined conform below ([3]): 
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  T

4321C 0000S   ,  (3) 

where:  is the mixture density; u and v are the 

Cartesian velocity components in the x and y 

directions, respectively; p is the fluid static pressure; 

e is the fluid total energy; 1, 2, 3 and 4 are the 

densities of the N, N2, NO and O, respectively; H is 

the total enthalpy of the mixture; the ’s are the 

components of the viscous stress tensor; qx and qy 

are the components of the Fourier heat flux vector in 

the x and y directions, respectively; Re is the 

laminar Reynolds number of the flow; svsx and 

svsy represent the diffusion flux of the species, 

defined according to the Fick law; x and y are the 

terms of mixture diffusion; and s  is the chemical 

source term of each species equation, defined by the 

law of mass action. 

 The viscous stresses, in N/m
2
, are determined, 

following a Newtonian fluid model, by: 
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in which  is the fluid molecular viscosity. The 

components of the Fourier heat flux vector, which 

considers only thermal conduction, are defined by: 

              
x

T
kq x



    and   

y

T
kq y



 .          (5) 

The laminar Reynolds number is defined by: 

                              LVRe ,                   (6) 
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where “” represents freestream properties, V 

represents the flow characteristic velocity and L is a 

characteristic length of the studied configuration. 

The species diffusion terms, defined by the Fick 

law, to a thermal equilibrium condition, are 

determined by ([3]): 

x

Y
Dv s

sxs



    and   

y

Y
Dv s

sys



 ,  (7) 

with “s” referent to a given species, Ys being the 

species mass fraction and D the binary diffusion 

coefficient of the mixture. The chemical species 

mass fraction “Ys” is defined by: 

                              ssY                                (8) 

and the binary diffusion coefficient of the mixture is 

defined by: 

                              
Cp

kLe
D


 ,                               (9) 

where: k is the mixture thermal conductivity; Le is 

the Lewis number, kept constant to thermal 

equilibrium, with value 1.4; and Cp is the mixture 

specific heat at constant pressure. The Cp 

calculation is presented in section 2.2. The x and y 

diffusion terms which appear in the energy equation 

are determined by ([3]): 

 



ns

1s

ssxsx hv    and   



ns

1s

ssysy hv , (10) 

 

being vsx and vsy the species diffusion velocities in 

the x and y directions, respectively; hs the specific 

enthalpy (sensible) of the chemical species “s” and 

“ns” the total number of chemical species. 

 

2.2 Thermodynamic model/Thermodynamic 

properties 

To a thermal equilibrium and chemical non-

equilibrium formulation, it was necessary the 

specification of the specific heat at constant pressure 

and of the specific enthalpy. According to [9], the 

expressions to these quantities were estimated 

conform below:  

 
4
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4
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321

univ

s TATATATAA
R

Cp
 ,  (11) 

where: Cps is the specific heat at constant pressure 

to the “s” species; Runiv is the gas universal constant 

[Runiv = 8,314.3J/(kg-mol.K) = 1.987 cal/(g-mol.K), 

1 cal = 4.184J]; The A1, A2, A3, A4 and A5 are 

coefficients of curve adjust to several temperature 

ranges, given in [9-10]; T is the absolute mixture 

temperature, given in Kelvin. 

 The specific enthalpy (sensible enthalpy) is given 

by the following expression: 
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where: A1, A2, A3, A4, A5 and A6 are coefficients of 

curve adjust to several temperature ranges. The 

values of these coefficients are presented in [9-10]. 

Aiming to smooth the behavior of the 

thermodynamic properties at the boundaries of each 

interval, [9-10] presents a subroutine list which 

performs linear interpolation of such 

thermodynamic curves in appropriated intervals. In 

such manner, it is possible to avoid the discontinuity 

of the first derivative of the thermodynamic 

properties in relation to the temperature, obtaining, 

of this way, smooth functions in all the interval of 

the curve adjust. The mixture total energy is 

determined by: 

 







 



22
ns

1s

0

ss

ns

1s

ss vu21hYTCvYe , (13) 

in the two-dimensional case, 

where: 

 Cvs is the specific heat at constant volume to 

each “s” chemical species, in J/(kg.K); 

 ss R23Cv  ,                                                  (14) 

 to monatomic gas, in J/(kg.K);  

 ss R25Cv  ,                                                  (15) 

to diatomic gas, in J/(kg.K); 

 sunivs MRR  ,                                            (16) 

gas specific constant of the “s” chemical species, in 

J/(kg.K);  

 sM  is the molecular weight of the “s” species; 

 T is the translational/rotational temperature; 

 



ns

1s

0

ss

0 hYh                                                (17) 

is the mixture formation enthalpy.  
0

sh  is the formation enthalpy of each “s” chemical 

species (with value 0.0 to diatomic gases of the 
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same species). The species-formation enthalpy per 

g-mol of the species is shown in Table 1. 

Table 1 : Species-formation enthalpy. 

 

S
(1)

 N N2 NO O O2 

h
0(2)

 470,816.0 0.0 90,671.0 0.0 246,783.0 
(1) S = Species; (2) Given in J/g-mol. 

As can be observed, dividing each term above by 

the species molecular weight and multiplying the 

result by 10
3
, it is possible to obtain the formation 

enthalpy in J/kg. The mixture sensible enthalpy, the 

mixture specific heat at constant pressure, the 

density of each chemical species “s” and the 

principle of conservation of the mixture mass 

fraction are defined by: 





ns

1s

sshYh , 



ns

1s

ssCpYCp ; 

 
 


ns

1s

ss

ns

1s

ss YY , 

                               1Y
ns

1s

s 


,                            (18) 

where: Cps is the specific heat at constant pressure 

of the “s” chemical species. The mixture total 

enthalpy is determined by: 

                      )vu(5.0hH 22  ,                 (19) 

 in the two-dimensional case. 

As the system of equations is solved to “ns-1” 

species, the density of the n
th
 species is determined 

by: 

                           





1ns

1s

sn .                       (20) 

 

The species molecular weights in g/g-mol are 

obtained from [11] and are presented in Table 2. 

 To the case of thermal equilibrium and chemical 

non-equilibrium, it is common in the CFD literature 

the reference to a frozen ratio of specific heats to de 

calculation of the sound speed. This ratio is defined 

as follows. First, the mixture specific heat at 

constant pressure and the mixture specific heat at 

constant volume are calculated: 

 



ns

1s

ssmixt CpYCp   and  



ns

1s

ssmixt CvYCv ; (21) 

 

Table 2 : Molecular weight of the chemical 

species. 

 

Species Molecular Weight 

(g/g-mol) 

N 14.008 

N2 28.016 

NO 30.008 

O 16.000 

O2 32.000 

Therefore, the mixture frozen ratio of specific heats, 

f, is defined by: 

                          mixtmixtf CvCp .                 (22) 

The mixture translational/rotational temperature is 

obtained from Eq. (13), in the two-dimensional 

case: 
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                            (23) 

and the mixture pressure is obtained from the Dalton 

law of the partial pressures: 

                              



ns

1s

ss TRp .                      (24) 

 

2.3 Transport model / Transport physical 

properties 

The transport properties of a gaseous mixture 

are obtained by the [12] mixture general rule. 

2.3.1 Mixture molecular viscosity 
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in which: 

 s is the molecular viscosity of the “s” 

specie, in kg/(m.s); 
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Species molecular viscosity 
According to [9], the species molecular 

viscosity can be determined by: 

    ss
2

s
3

ss DTCTBTAE

s Te  


lnlnln
, in g/(cm.s),                            

(28) 

where: As, Bs, Cs, Ds and Es are constants 

defined in Table 3, valid to the interval 1,000 K 

 T  30,000 K. To values below 1,000 K, it 

was employed the empiric formula of 

Sutherland to the air, applied to all species 

([13]): 

 4.110T/T10x458.1 5.16

s   , in kg/(m.s).                          

(29) 
 

Table 3 : Coefficients As, Bs, Cs, Ds and Es to 

N, N2, NO, O and O2. 

 

S
(1)

 As Bs Cs Ds Es 

N 0.0 0.0 0.0120 0.5930 -12.3805 

N2 0.0 0.0 0.0203 0.4329 -11.8153 

NO 0.0 0.0 0.0452 -0.0609 -9.4596 

O 0.0 0.0 0.0205 0.4257 -11.5803 

O2 0.0 0.0 0.0484 -0.1455 -8.9231 
(1) S = Species. 

2.3.2 Mixture thermal conductivity 

It is defined by the same formula of the molecular 

viscosity, replacing  by k; in other words: 

 






 





























ns

1s

sr

s

r

srsr rs

s

s

r

s

M

M

A

1

3

5

MM

M

X

X
1

k
k

*

, (30) 

where: 

 ks is the thermal conductivity of the “s” species, 

in J/(m.s.K); 

 

2

sr

5.0
5.0

s

r

r

s

sr

5.0

rs

s

sr B
M

M

k

k
F

MM8

M






















































and the other parameters defined according to 

Eq. (27). 

Species frozen thermal conductivity 
According to [14], the species frozen thermal 

conductivity can be determined by: 

 
    skfskf

2
skf

3
skfskf DTCTBTAE

s Tek ,,,,, lnlnln 
 ,  (31) 

 in cal/(cm.s.K),                                                          

where: Akf,s, Bkf,s, Ckf,s, Dkf,s and Ekf,s are constants 

defined in Table 4, valid to the interval 1,000 K  T 

 30,000 K. To values below 1,000 K, it was 

employed the empiric formula of Sutherland to the 

air, applied to all species ([13]): 

 0.194T/T10x495.2k 5.13

s  
, in J/(m.s.K).                            

(32) 

Table 4 : Coefficients Akf,s, Bkf,s, Ckf,s, Dkf,s and 

Ekf,s to N, N2, NO, O and O2. 

 

S
(1)

 Akf,s Bkf,s Ckf,s Dkf,s Ekf,s 

N 0.0 0.0 0.0169 0.5373 -12.8682 

N2 0.0418 -1.2720 14.4571 -71.9660 122.5745 

NO 0.0263 -0.8130 9.4203 -47.6841 79.4139 

O 0.0 0.0 0.0319 0.2485 -11.6657 

O2 0.0776 -2.5007 30.1390 -160.1758 307.3634 

(1) S = Species. 
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2.4 Chemical model 
 

2.4.1 Law of mass action 

The symbolic representation of a reaction adopted in 

the present work follows the formulation of [1] and 

is given by: 

         



ns

1s

ssr

ns

1s

ssr AA '''
, r = 1,..., nr;         (33) 

and the law of mass action applied to this system of 

chemical reactions is defined by: 

  
 






























 










 


nr

1r

ns

1s s

s

br

ns

1s s

s

frsrsrss

srsr

M
k

M
kM

'''

''' , (34) 

Table 5 : Chemical reactions and forward 

coefficients. 

 

Reaction 

Forward reaction 

rate coefficients, kfr, 

cm
3
/(mol.s) 

Third 

body 

 

O2+M2O+M 

 

3.61x10
18

T
-1.0

e
(-59,400/T)

 

O,  

N, 

O2, 

N2, 

NO 

 

N2+M2N+M 

 

1.92x10
17

T
-0.5

e
(-113,100/T)

 

O, 

O2, 

N2, 

NO 

N2+N2N+N 4.15x10
22

T
-0.5

e
(-113,100/T)

 - 

 

NO+MN+O+M 

 

3.97x10
20

T
-1.5

e
(-75,600/T)

 

O,  

N, 

O2, 

N2, 

NO 

NO+OO2+N 3.18x10
9
T

1.0
e

(-19,700/T)
 - 

N2+ONO+N 6.75x10
13

e
(-37,500/T)

 - 

in which: As represents the chemical symbol of the 

“s” species; “ns” is the number of studied chemical 

species (reactants and products) involved in the 

considered reaction; “nr” is the number of reactions 

considered in the chemical model; 
'

sr  and 
''

sr  are 

the Stoichiometric coefficients to reactants and 

products, respectively; and 
TCB

fr eATk /  and 

E

br DTk  , with A, B, C, D and E being constants 

of the specific chemical reaction under study (“fr” = 

forward reaction and “br” = backward reaction). In 

the present work, ns = 5 and nr = 17. Tables 5 and 6 

present the values of A, B, C, D and E to the 

seventeen (17) chemical reactions to be studied, in 

the forward and backward senses, respectively. 

Table 6 : Chemical reactions and backward 

coefficients. 

 

Reaction 

Backward reaction 

rate coefficients, kbr, 

cm
3
/(mol.s) or 

cm
6
/(mol

2
.s) 

Third 

body 

 

O2+M2O+M 

 

3.01x10
15

T
-0.5

 

O,  

N, 

O2, 

N2, 

NO 

 

N2+M2N+M 

 

1.09x10
16

T
-0.5

 

O, 

O2, 

N2, 

NO 

N2+N2N+N 2.32x10
21

T
-0.5

 - 

 

NO+MN+O+M 

 

1.01x10
20

T
-1.5

 

O,  

N, 

O2, 

N2, 

NO 

NO+OO2+N 9.63x10
11

T
0.5

e
(-

3,600/T)
 

- 

N2+ONO+N 1.5x10
13

 - 

 

2.4.2 Air chemical model 

In the present work, five (5) chemical species (N, 

N2, NO, O and O2) and seventeen (17) chemical 
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reactions [dissociation of N2 and O2, formation of N, 

NO and O, and shuffle or exchange reactions 

(recombination reactions)] were studied. The 

reactions are as follows: 

(a) Reactions of dissociation due to impact: 

(1) O2+O22O+O2;    (10) O2+NO2O+NO;      

(2) N2+O22N+O2;    (11) N2+NO2N+NO; 

(3) NO+O2N+O+O2;    (12) NO+NON+O+NO; 

(4) O2+O2O+O;        (13) O2+N22O+N2; 

(5) N2+O2N+O;    (14) N2+N22N+N2; 

(6) NO+ON+O+O;    (15) NO+N2N+O+N2; 

(7) O2+N2O+N; 

(8) N2+N2N+N; 

(9) NO+NN+O+N. 

(b) Reactions of shuffle or exchange: 

(16) NO+OO2+N; 

(17) N2+ONO+N. 

 

The Stoichiometric coefficients of these reactions 

for each species are presented in [10]. 

 

 

3 Structured Algorithm of [6] in 

Two-Dimensions 
The numerical procedure to the solution of the 

convective flux consists in uncouple the Euler 

equations in two parts, according to [15]. One 

convective part associated with the dynamic flux of 

the reactive Euler equations and the other 

convective part associated with the chemical flux of 

the reactive Euler equations. The separation is 

described as follows. 

 The approximation to the integral equation (1) to 

a rectangular finite volume yields a system of 

ordinary differential equations with respect to time 

defined by: 

                         jijiji RdtdQV ,,,  ,                (35) 

with Ri,j representing the net flux (residual) of mass 

conservation, general and of species, of the linear 

momentum conservation and of total energy in the 

volume Vi,j. One graphic representation of the 

rectangular computational cell of volume Vi,j, with 

its nodes and respective flux interfaces, is presented 

in Fig. 1. The volume Vi,j of the computational cell 

described above is determined by: 

        j,1ij,i1j,1ij,i1j,1ij,1i1j,1ij,1ij,ij,i yxxyxxyxx5.0V

      1j,1ij,i1j,ij,i1j,i1j,1i1j,i1j,1ij,i yxxyxxyxx5.0   . (36) 

 

Figure 1 : Structured Computational Cell, 

Nodes and Flux Interfaces. 

 The components of the unity vector normal 

to the flux interface and the area of the flux 

interface “l”, l

xn , l

yn  and lS , are defined as: 

  5.02

l

2

ll

l

x yxyn  , 

  5.02

l

2

ll

l

y yxxn 
 

                            5.02

l

2

l

l yxS  .                 (37) 

Expressions to xl and yl are given in Table 7. 

Table 7 : Values of xl and yl to the 

structured case. 

 

Interface xl yl 

l = (i,j-1/2) 
jij1i xx ,,   jij1i yy ,,   

l = (i+1/2,j) 
j1i1j1i xx ,,    j1i1j1i yy ,,    

l = (i,j+1/2) 
1j1i1ji xx   ,,  1j1i1ji yy   ,,  

l = (i-1/2,j) 
1jiji xx  ,,  1jiji yy  ,,  
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The residual is calculated as: 

 j,2/1i2/1j,ij,2/1i2/1j,ij,i RRRRR   ,  (38) 

where 
v

j21i

e

j21ij21i RRR ,/,/,/   , with “e” 

representing the residual associated with the flux of 

the Euler equations and “v” representing the 

residual associated with the viscous flux. The 

residuals are summed because the area components 

are considered with their respective coordinate 

signals. 

 The discrete flux of the Euler equations or the 

discrete convective flux calculated in this work 

follows the procedure described by the AUSM 

scheme (Advection Upstream Splitting Method) of 

[16]. This flux can be interpreted as a sum involving 

the arithmetical average between the right (R) and 

the left (L) states of the (i+1/2,j) cell face, related to 

cells (i,j) and (i+1,j), respectively, multiplied by the 

interface Mach number, and a scalar dissipative 

term, as shown in [16]. Hence, the discrete-

dynamic-convective-flux vector is defined by: 
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(39) 

and the discrete-chemical-convective-flux vector is 

defined by: 
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(40) 

where  T
j21iyxj21i SSS

,/,/    defines the normal 

area vector to the flux interface (i+1/2,j), in which 

the area components are defined by: 

 j21ij21i

x

j21i

x SnS ,/,/,/   , 

                      j21ij21i

y

j21i

y SnS ,/,/,/   .              (41) 

The quantity “a” represents the sound speed, 

calculated as: 

                             pa f ,                           (42) 

to a thermal equilibrium formulation. Mi+1/2,j defines 

the advective Mach number at the face (i+1/2,j) of 

cell (i,j), which is calculated according to [16] as: 

                        


  RLj,2/1i MMM ,                 (43) 

where the separated Mach numbers, M
+/-

, are 

defined by [6] as: 

  ;1

;1Mif,0

Mif,1M25.0

;1Mif,M

M
2




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
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            ;1
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M
2


















 (44) 

ML and MR represent the Mach numbers associated 

with the left and right states, respectively. The 

advection Mach number is defined as: 

                          SavSuSM yx  .              (45) 

The pressure at face (i+1/2,j) of cell (i,j) is 

calculated in a similar way: 

                             


  RLj,2/1i ppp ,                 (46) 

with p
+/-

 representing the pressure separation 

defined according to [6]: 
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;1Mif,0

;1Mif,M21Mp25.0

;1Mif,p

p
2

 

               



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


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.1Mif,p

;1Mif,M21Mp25.0

;1Mif,0

p
2

(47) 

The definition of the dissipation term  determines 

the particular formulation of the convective fluxes. 

The choice below corresponds to the [6] scheme, 

according to [17]: 

 
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2
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2
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VL
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             (48) 
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The time integration is performed employing a 

Runge-Kutta explicit method of five stages, second-

order accurate, to the two types of convective flux. 

To the dynamic part, this method can be represented 

in general form as: 

           
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,,
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,
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,
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QQ

VQRtQQ
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




,     (49) 

and to the chemical part it can be represented in 

general form by: 

      
)k(

j,i

)1n(

j,i

)1k(

j,iCj,i

)1k(

j,ij,ik

)0(

j,i

)k(

j,i

)n(

j,i
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j,i

QQ

QSVQRtQQ

QQ


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




, (50) 

where k = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 

1/2 and 5 = 1. This scheme is first-order accurate in 

space and second-order accurate in time. The 

second-order of spatial accuracy is obtained by the 

MUSCL procedure (details in [7]). 

 The [6] scheme in its first-order two-dimensional 

unstructured version to an ideal gas formulation is 

presented in [18]. The extension to reactive flow in 

thermal equilibrium and chemical non-equilibrium 

can be deduced from the present code. This task will 

be done in a next paper to be published by the 

authors, which describes the unstructured algorithm 

to thermal equilibrium and chemical non-

equilibrium in two-dimensions. 

 The viscous formulation follows that of [19], 

which adopts the Green theorem to calculate 

primitive variable gradients. The viscous vectors are 

obtained by arithmetical average of flow properties 

between cell (i,j) and its neighbors. As was done 

with the convective terms, there is a need to separate 

the viscous flux in two parts: dynamical viscous flux 

and chemical viscous flux. The dynamical part 

corresponds to the first four equations of the Navier-

Stokes ones and the chemical part corresponds to 

the last four equations. 

 A spatially variable time step procedure was 

employed aiming to accelerate the convergence of 

the numerical schemes. This technique has provided 

excellent convergence gains as demonstrated in [4-

5] and is implemented in the present codes. 

 

 

4 Results 

Tests were performed in three microcomputers. 

Four (4) orders of reduction of the maximum 

residual were adopted as convergence criterion. In 

the simulations, the attack angle was set equal to 

zero. 

4.1 Initial and boundary conditions to the 

studied problem 
The initial conditions are presented in Table 8. The 

Reynolds number is obtained from data of [20]. The 

boundary conditions to this problem of reactive flow 

are detailed in [10], as well the geometry in study, 

the meshes employed in the simulations and the 

description of the computational configuration. The 

geometry is a blunt body with 1.0 m of nose ratio 

and parallel rectilinear walls. The far field is located 

at 20.0 times the nose ratio in relation to the 

configuration nose. The dimensionless employed in 

the Euler and Navier-Stokes equations in this study 

are also described in [10]. 

 
Table 8 : Initial conditions to the problem of the 

blunt body. 
 

Property Value 

M 8.78 

 0.00326 kg/m
3
 

p 687.0 Pa 

U 4,776 m/s 

T 694.0 K 

Altitude 40,000 m 

YN 10
-9

 

2NY  0.73555 

YNO 0.05090 

YO 0.07955 

L 2.0 m 

Re  2.3885x10
6
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4.2 Studied cases 
Table 9 presents the studied cases in this work, the 

mesh characteristics and the order of accuracy of the 

[6] scheme. 

Table 9 : Studied cases, mesh characteristics and 

accuracy order. 

 

Case Mesh 
Accuracy 

order 

Inviscid – 2D 63x60 First
a
 

Viscous – 2D 63x60 (7.5%)
c
 First

a
 

Inviscid – 2D 63x60 Second
a
 

Viscous – 2D 63x60 (7.5%) Second
a
 

Inviscid – 2D 63x60 First
b
 

Viscous – 2D 53x60 (5.0%) First
b
 

a Structured spatial discretization; b Unstructured spatial 

discretization; c Exponential stretching. 

4.3 Results in thermal equilibrium and 

chemical non-equilibrium 

 
4.3.1 Inviscid, structured and first-order 

accurate case 

Figure 2 presents the pressure contours in the field. 

The pressure peak is at the configuration nose, as 

expected. The solution presents good symmetry 

properties. There are not pre- or post-shock 

oscillations. 

 
Figure 2 : Pressure Contours. 

Figure 3 exhibit the Mach number contours. Good 

symmetry properties are again observed in the 

solution and the shock is well captured. The flow is 

slowdown due to the presence of the configuration 

and in the line of stagnation, behind the shock, the 

flow is subsonic. 

 
Figure 3 : Mach Number Contours. 

 
Figure 4 : T/R Temperature Contours. 

 
Figure 5 : Mass Fraction Distribution at the Line of 

Stagnation. 
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 Figure 4 shows the translational/rotational-

temperature-field contours. The temperature peak 

reaches 7,940 K, what represents that in this region 

exists the O2 and N2 dissociation. This region, in the 

inviscid case, is restricted to the region of the 

configuration nose. The shock wave is well captured 

and the contours present good symmetry 

characteristics. Figure 5 exhibits the mass fraction 

distribution of the five studied chemical species: N, 

N2, NO, O and O2, along the configuration line of 

stagnation. It is notable enough the dissociation of 

the N2 and of the O2, with the consequent formation 

of NO, O and N. The formation of the NO behind 

the shock, particularly, is more meaningful than the 

others due to the fact of the dissociation of O2 and 

the considerable dissociation of N2. 

 

4.3.2 Viscous, structured and first-order 

accurate case 

Figure 6 presents the pressure contours. Good 

symmetry characteristics are observed. The viscous 

pressure field is more severe than the one due to the 

inviscid case, because of, mainly, to the transport 

phenomena associated to the viscosity, which are 

considered. 

 
Figure 6 : Pressure Contours. 

 
Figure 7 : Mach Number Contours. 

Figure 7 exhibits the Mach number contours 

obtained from the simulation. Good symmetry is 

observed. The region of low Mach number along the 

blunt body demonstrates that the adherence and 

impermeability conditions were guaranteed. 

 Figure 8 shows the translational/rotational 

temperature contours to the viscous case. As can be 

observed, the temperature peak exceeds 8,700 K 

close to the geometry, what represent the 

dissociation of O2 and N2 in this region. This was 

the expected behavior since the physical transport 

phenomena of viscosity and thermal conductivity 

were considered, taking into account adiabatic wall. 

Good symmetry characteristics are observed. Figure 

9 presents the mass fraction distribution from the 

five chemical species studied in this work: N, N2, 

NO, O and O2, along the line of stagnation of the 

blunt body geometry. It is possible to observe, in 

relation to the inviscid case, bigger dissociation of 

N2 and O2 close to the wall and a slight increase in 

the formation of NO. The N also has an increase in 

its formation in relation to the inviscid case. 

 
Figure 8 : T/R Temperature Contours. 

 
Figure 9 : Mass Fraction Distribution at the Line of 

Stagnation. 
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4.3.3 Inviscid, structured and second-order 

accurate case 
Figure 10 exhibits the pressure contours to the 

problem of the blunt body, employing the [6] 

scheme using the MUSCL procedure to obtain 

second-order accuracy. This MUSCL procedure 

employs a non-linear flux limiter type “minmod”. 

The solution presents good characteristics of 

symmetry. In quantitative terms, this pressure field 

is more severe than the one due to the first-order 

solution. Figure 11 shows the Mach number 

contours to this problem of the blunt body submitted 

to an inviscid flow. Good symmetry characteristics 

are observed. Behind the normal shock, the flow 

becomes subsonic because of the intensity of this 

one. 

 
Figure 10 : Pressure Contours. 

 
Figure 11 : Mach Number Contours. 

 

 Figure 12 exhibits the translational / rotational 

temperature distribution in the computational 

domain. As can be perceived, the temperature field 

to this simulation of second-order is also more 

intense than the one due to the first-order solution. 

The temperature peak is superior to 8,100 K at the 

configuration nose, what express a bigger 

dissociation of O2 and N2 in this region. It is also 

possible to observe that due to the not formulation 

of transport mechanisms, like viscosity, thermal 

conductivity and species diffusion (Fick law), the 

temperature peak stays confined to the 

configuration-nose region, does not propagating 

along the blunt body, as expected to a inviscid 

formulation. Figure 13 presents the mass fraction 

distribution of the five researched-chemical species 

in this work along the line of stagnation of the blunt 

body. As can be observed, there is minor 

dissociation of N2 and O2 along the line of 

stagnation than the one due to the first-order 

solution. The formation of N is also discrete as 

compared with the others and with the first-order 

solution. The formation of NO and O are also 

inferior to those obtained with the first-order 

solution. 

 
Figure 12 : T/R Temperature Contours. 

 

Figure 13 : Mass Fraction Distribution at the Line of 

Stagnation. 

 It is important to emphasize that, although the 

first-order solution estimates bigger formations of 

NO and N at the line of stagnation and bigger 
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dissociations of N2 and O2 also at the line of 

stagnation, this occurs exactly at the line of 

stagnation. The contours of the mass fraction detect 

an increase in the formation of the N and of the NO 

along the blunt body, opposed to the observed at the 

line of stagnation. It is true because both regions are 

different: line of stagnation and blunt body. Hence, 

to the more precise solution, the second-order 

solution, there was a reduction in the dissociation of 

the N2 and O2 at the line of stagnation and along the 

blunt body, reduction of the formation of the N and 

NO at the line of stagnation and increase of the N, 

NO and O along the blunt body. 

 

4.3.4 Viscous, structured and second-order 

accurate case 
Figure 14 shows the pressure contours to the 

problem of the blunt body, in two-dimensions, 

considering viscous flow simulated with the [6] 

scheme of second-order TVD (Total Variation 

Diminishing). The pressure peak is lower than the 

respective one due to the first-order solution. The 

pressure field is in general less severe than the 

respective one due to the first-order solution. 

 
Figure 14 : Pressure Contours. 

 
Figure 15: Mach Number Contours. 

The Mach number contours are exhibited in Fig. 15. 

They present good symmetry characteristics and the 

shock wave is closer than the inviscid solution due 

to the employed mesh stretching and due to the 

reactive effects of the viscous simulation. As can 

also be observed, the region of low velocity 

propagates along the blunt body, satisfying the 

conditions of adherence and impermeability of the 

viscous formulation. 

 
Figure 16 : T/R Temperature Contours. 

 
Figure 17 : Mass Fraction Distribution at the Line of 

Stagnation. 

 

 Figure 16 presents the translational/rotational 

temperature distribution in the computational 

domain. The translational/rotational temperature 

peak, approximately 8,500 K, was inferior to the 

respective peak obtained by the first-order solution. 

The influence of the translational/rotational 

temperature is confined to a very much restrict 

region, which corresponds to the boundary layer, 

due to the consideration of the transport phenomena 

(viscosity, thermal conductivity and species 

diffusion). Figure 17 exhibits the mass fraction 

distribution of the five chemical species studied in 
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this work, namely: N, N2, NO, O and O2, along the 

line of stagnation of the blunt body. As can be 

observed, an increase in the formation of the NO, of 

O and of the N, with the respective reduction in the 

N2 and O2 species due to dissociation, occurs. The 

physical phenomena expected to be observed 

occurred in this second-order solution. With this, it 

is possible to conclude that the second-order 

solution present meaningful values of formation of 

N, NO and O, as well values of the reduction of the 

species N2 and O2, although more modest than those 

presented by the first-order-structured solution. This 

thinking does not want to say that the first-order 

solution is the correct one. Only it presented more 

dissociation of O2 and N2. The second-order 

solution present a different behaviour, more discrete 

in the dissociation of O2 and N2, resulting also in 

more discrete additions of N, NO and O. Due to this 

solution is of second-order, it should be considered 

as the most correct in its results. 

 

4.3.5 Inviscid, unstructured and first-order 

accurate case 
Figure 18 exhibits the pressure contours around the 

blunt body in the computational domain. This 

solution was obtained according to an unstructured-

spatial-discretization context and, therefore, 

symmetry properties, in general, are not observed. 

The pressure field is more severe than that obtained 

with the respective structured first-order solution. 

Figure 19 shows the Mach number contours in the 

computational domain. A region of subsonic flow is 

formed at the configuration nose due to the shock 

wave in this region be normal. The shock contours 

present the expected behavior: normal shock at the 

blunt body nose, being attenuated until reach a 

Mach wave configuration, far from the geometry. 

This Mach wave is obtained through successive 

oblique shock waves acting over the normal shock. 

 
Figure 18 : Pressure Contours. 

 
Figure 19 : Mach Number Contours. 

 
Figure 20 : T/R Temperature Contours. 

 
Figure 21 : Velocity Vector Field. 

 

 Figure 20 exhibits the temperature distribution in 

the computational domain of the simulation. The 

temperature peak, superior to 8,100 K at the 

geometry nose, is bigger than the respective 

temperature peak of the structured-first-order 

solution. It is expected, with this value of 

temperature, dissociation of O2 and of N2 in this 

region. With this analysis, it has considerable 

increase in the mass fractions of N, NO and O. 
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Figure 21 shows the velocity vector field, assuring 

that the tangency condition is satisfied by the 

adopted inviscid formulation. 

 

4.3.6 Viscous, unstructured and first-order 

accurate case  
Figure 22 presents the pressure contours obtained in 

the computational domain to the unstructured and 

viscous case. This pressure field is less severe than 

the one obtained by the structured-first-order 

solution. This solution presents more symmetry than 

its inviscid contra part and presents the shock 

position closer to the configuration nose, as 

expected by a viscous and reactive solution. Figure 

23 shows the Mach number contours. Behind the 

normal shock, a subsonic region is formed, as 

expected. This region is extended along the blunt 

body, at the lower and upper surfaces. Better 

characteristics of symmetry are observed because of 

the employment of a more refined mesh. The shock 

wave behaves as expected: normal at the blunt body 

nose and attenuated until reaches a Mach wave 

configuration, far from the geometry under study. 

 
Figure 22 : Pressure Contours. 

 
Figure 23 : Mach Number Contours. 

 
Figure 24 : T/R Temperature Contours. 

 
Figure 25 : Velocity Vector Field. 

 

 Figure 24 presents the contours of the 

distribution of the translational/rotational 

temperature in the calculation domain. The 

temperature peak reaches more than 9,300 K at the 

nose and along the blunt body walls. This implies 

that, in these regions, the O2 and N2 are dissociated, 

having bigger formation of N, NO and O than in the 

structured-viscous-first-order case. Figure 25 

presents the velocity vector field to this viscous 

case. As observed, the adherence and 

impermeability conditions are satisfied by the 

employed viscous formulation. 

 

4.3.7 Shock position 

In this section is presented the behavior of the shock 

position in ideal and in thermal equilibrium and 

chemical non-equilibrium conditions. Only first-

order solutions are compared because the second-

order ideal gas solutions did not present converged 

ones. 
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The detached shock position in terms of pressure 

distribution, in the inviscid case and first-order 

accurate solution, is exhibited in Fig. 26. It is shown 

the ideal-gas-shock position and the thermal 

equilibrium and chemical non-equilibrium shock 

position. As can be observed, the ideal-gas-shock 

position is located at 1.25 m, whereas the thermal 

equilibrium and chemical non-equilibrium position 

is located at 0.90 m. As referred in the CFD 

literature, in reactive flow the shock is closer to the 

configuration. As can be observed in this inviscid 

solution, the reactive shock is actually closer to the 

blunt body than the ideal shock. 

 
Figure 26 : Shock Detachment (Inviscid Case). 

 
Figure 27 : Shock Detachment (Viscous Case). 

 

 The detached shock position in terms of pressure 

distribution, in the viscous case and first-order 

accurate solution, is exhibited in Fig. 27. It is shown 

the ideal-gas-shock position and the thermal 

equilibrium and chemical non-equilibrium shock 

position. As can be observed, the ideal-gas-shock 

position is located at 0.65 m, whereas the thermal 

equilibrium and chemical non-equilibrium position 

is located at 0.50 m. As mentioned above, in 

reactive flow the shock is closer to the 

configuration. As can be observed in this viscous 

solution, the reactive shock is actually closer to the 

blunt body than the ideal shock. 

 

4.3.8 Aerodynamic coefficients of lift and drag 

Table 10 exhibits the aerodynamic coefficients of 

lift and drag obtained by the problem of the blunt 

body, with structured discretization, to the reactive 

formulation. These coefficients are due to the 

pressure term alone. The contribution of the friction 

term was not considered. 

 To the problem of the blunt body, a symmetric 

geometry in relation to the x axis, a zero value, or 

close to it, to the lift coefficient is expected. By 

Table 10, it is possible to note that the solution 

closest to this value to cL was that of the [6] scheme 

with first-order accuracy, in an inviscid formulation. 

The maximum cD was obtained by the solution of 

the [6] scheme, first-order accurate and employing a 

viscous formulation. 

 

Table 10 : Aerodynamic coefficients of lift and 

drag to the structured blunt body case. 
 

Studied Case cL cD 

First-Order / Inviscid / 

TECNE
(1)

 
-1.942x10

-5
 0.952 

First-Order/Viscous/TECNE -6.225x10
-5

 1.180 

Second-Order / Inviscid / 

TECNE 
-7.816x10

-5
 1.055 

Second-Order / Viscous / 

TECNE 
-6.578x10

-5
 1.134 

(1) TECNE: Thermal Equilibrium and Chemical Non-Equilibrium. 

4.4 Computational performance of the 

studied algorithms 
Table 11 presents the computational data of the 

reactive simulations performed with the [6] scheme 

to the problem of the blunt body in two-dimensions. 

In this table are exhibited the studied case, the 

maximum number of CFL employed in the 

simulation, the number of iterations to convergence 

and the number of orders of reduction in the 

magnitude of the maximum residual in relation to its 

initial value to convergence. As can be observed, all 

test-cases converged with no minimal four orders of 

reduction in the value of the maximum residual. The 

maximum numbers of CFL presented the following 

distribution: 0.5 in two (2) cases (33.33%), 0.3 in 
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one (1) case (16.67%) and 0.1 in three (3) cases 

(50.00%). The convergence iterations did not 

overtake 7,800, in all studied cases. However, the 

time wasted in the simulations was much raised, 

taking until weeks to convergence (to four orders of 

reduction in the maximum residual and viscous 

case). This aspect can be verified in the 

computational costs presented in Table 12. It is 

important to emphasize that all two-dimensional 

viscous simulations were considered laminar, 

although high Reynolds number were employed in 

the simulations. 

Table 11 : Computational data of the reactive 

simulations of the blunt body. 

 

Studied 

Case 
CFL Iterations 

Orders of 

Reduction 

of the 

Residual 

First-Order/ 

Structured/ 

Inviscid/2D/

TECNE
(1)

 

0.5 513 4 

First-Order/ 

Structured/ 

Viscous/2D/

TECNE 

0.5 1,450 4 

Second-

Order/ 

Structured/ 

Inviscid/2D/

TECNE 

0.1 3,133 4 

Second-

Order/ 

Structured/ 

Viscous/2D/

TECNE 

0.1 6,620 4 

First-Order/ 

Unstructured

/Inviscid/2D/

TECNE 

0.3 1,312 4 

First-Order/ 

Unstructured

/Viscous/2D/

TECNE 

0.1 7,747 4 

(1) TECNE: Thermal Equilibrium and Chemical Non-Equilibrium. 

Table 12 : Computational costs of the [6] scheme 

in the reactive cases. 

 

Studied Case 
Computational 

Cost
(1)

 

Inviscid/First-

Order/Structured/2D/ 

TECNE 

0.0008065 

Viscous/First-

Order/Structured /2D/ 

TECNE 

0.0011627 

Inviscid/Second-

Order/Structured /2D/ 

TECNE 

0.0009068 

Viscous/Second-

Order/Structured /2D/ 

TECNE 

0.0012641 

Inviscid/First-

Order/Unstructured /2D/ 

TECNE 

0.0007397 

Viscous/First-

Order/Unstructured /2D/ 

TECNE 

0.0010261 

 (1) Measured in seconds/per iteration/per computational cell. 

 Table 12 exhibits the computational costs of the 

[6] scheme in the two-dimensional reactive 

formulation. This cost is evaluated in seconds/per 

iteration/per computational cell. They were 

calculated using a notebook with 2.13 GHz of clock 

and 1.0 GBytes of RAM. In the two-dimensional 

case, considering thermal equilibrium and chemical 

non-equilibrium, the cheapest algorithm was due to 

[6], inviscid, first-order of accuracy, unstructured, 

although the most expensive was due to [6], viscous, 

second-order accurate, structured. In percentage 

terms, the former is 70.89% cheaper. 

 

 

5 Conclusions 
This work, the first part of this study, presents a 

numerical tool implemented to simulate inviscid and 

viscous flows employing the reactive gas 

formulation of thermal equilibrium and chemical 

non-equilibrium flow in two-dimensions. The Euler 

and Navier-Stokes equations, employing a finite 
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volume formulation, on the context of structured 

and unstructured spatial discretizations, are solved. 

These variants allow an effective comparison 

between the two types of spatial discretization 

aiming verify their potentialities: solution quality, 

convergence speed, computational cost, etc. The 

aerospace problem involving the “hot gas” 

hypersonic flow around a blunt body, in two-

dimensions, is simulated. 
 To the simulations with unstructured spatial 

discretization, a structured mesh generator 

developed by the first authors ([21]), which create 

meshes of quadrilaterals (2D), was employed. After 

that, as a pre-processing stage ([22]), such meshes 

were transformed in meshes of triangles. Such 

procedure aimed to avoid the time which would be 

waste with the implementation of an unstructured 

generator, which was not the objective of the 

present work, and to obtain a generalized solver to 

the solution of the reactive equations. 

 In this work, first part of this study, the 

structured formulation of the two-dimensional Euler 

and Navier-Stokes reactive equations is presented. 

In a next paper, the second part of this study, it will 

be presented the unstructured version of the 

calculation algorithm in two-dimensions to 

complete the formulation in structured and in 

unstructured contexts. 

 The results have demonstrated that the most 

correct aerodynamic coefficient of lift is obtained by 

the [6] first-order accurate scheme in the inviscid, 

structured, blunt body simulation. The cheapest 

algorithm was the unstructured [6] scheme, first-

order accurate in space, to an inviscid simulation. 

Moreover, the shock position is closer to the 

geometry as using the reactive formulation. It was 

verified in the inviscid and viscous cases. 

 In the [23] study, the results have demonstrated 

that the most critical pressure field was obtained by 

the [6] scheme, first-order accurate, viscous and in 

its structured version. Moreover, in this case, the 

peak temperature reached its maximum in this case. 

The cheapest algorithm was the [6] scheme, 

inviscid, first-order accurate and in its unstructured 

version. It was 115.51 % cheaper than the most 

expensive version of the [6] algorithm. The shock 

position determined by the thermal equilibrium and 

chemical non-equilibrium case was closer to the 

configuration nose than in the ideal gas case and in 

the respective two-dimensional case, ratifying the 

expected behavior highlighted in the CFD literature. 
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